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 Image Denoising by Modified Overcomplete 
Wavelet Representation Utilizing Adaptive 

Thresholding Algorithm 
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Abstract— For images corrupted with Gaussian noise, the wavelet thresholding proves to be an effective approach to remove as much 

noise while retaining important signal features, but the performance decreases under heavy noise because the amount of noise is not 

considerd while denoising. This paper aims at implementing an efficient image denoising method adaptive to the noise and is achieved by 

using an adaptive wavelet packet thresholding function based on a modified form of overcomplete wavelet representation. The adaptive 

algorithm is called OLI – Shrink and certain changes have been applied to the original form of overcomplete representation so that it 

become perfectly compatible for the application of OLI-Shrink. The performance of the algorithm is evaluated by computing the Peak 

Signal to Noise Ratio (PSNR) and a new performance measure called the Universal Image Quality Index (UIQI) and is found to outperform 

various existing wavelet based denoising algorithms. 

Index Terms— Adaptive thresholding algorithm, coefficient thresholding, image denoising, optimal wavelet basis (OWB), over-complete 

representation, subband weighting function, wavelet packet transform. 

 

——————————      —————————— 

1 INTRODUCTION                                                                     

isual information transmitted  in the form of d igital images 

is becoming a major method of communication in the 

modern age, but is often corrupted  with noise either in its  

acquisition or transmission . The goal of denoising is to remove 

the noise while retaining as much as possible the important 

signal features such as edges, textures etc. The wavelet based  

approach is the best option for denoising images corrupted  

with Gaussian noise. In wavelet domain, noise is uniformly 

spread throughout the coefficients while most of the image 

information is concentrated  in the few largest ones. This idea 

is the basis of denoising by means of coefficient thresholding.  

Conventional methods do not take the intensity of noise in-

to consideration and is therefore operating in a similar manner 

to images containing noise at d ifferent levels. So a new me-

thod is to be designed such that as the noise con tent varies, the 

value of threshold  must also change and the denoising algo-

rithm must be adap tive to noise. In other words, the denoising 

should  be based on an adaptive thresholding function . This 

paper aims at implementing such an efficient image denoising 

method based on a new adaptive wavelet packet thresholding 

function. The new technique called  Optimum Linear Interpo-

lation Shrink or OLI-Shrink algorithm is a wavelet based  

adaptive thresholding algorithm and operates on the image on 

the basis of the estimated  noise and is hence an adaptive tech-

nique. The new value an optimum value found using MAP 

based estimation ru les incorporating the data mean, noise v a-

riance, and certain weighting constants depend ing on both 

data and noise parameters. The overall denoising achieved by 

applying the OLI-Shrink method as part of the overcomplete 

wavelet (OCW) representation. Overcomplete wavelet repre-

sentation improve SNR of simple DWT based methods by av-

eraging the results obtained via separate independent m e-

thods. 

A high quality image is taken and some known noise 

is added to it. This would  then be given as input to the denois-

ing section, which produces an image close to the original high 

quality image. The performance of most of the algorithms are 

evaluated  by computing the Peak Signal to Noise Ratio 

(PSNR) but this does not give any implication on the per-

ceived quality. So a new image quality index introduced to 

compare images based on their visual quality which is known 

as the Universal Image Quality Index (UIQI).  

2   BASIC WAVELET DENOISING     

The concept of wavelets was introduced in 1984 for analysing 

the information content of images. Later, Stephane G. Mallat 

introduced a theoretical foundation for multiresolu tion signal 

decomposition which is technically termed as the wavelet re-

presentation. Wavelets are mathematical functions that cut up 

data into d ifferent frequency components and then study each 

component with a resolu tion matched to its size. The analysis 

involves adopting a prototype wavelet function called  mother 

wavelet. Wavelet systems are generated  from single scaling 

function by scaling and translation. The original signal can be 

represented  in terms of wavelets using the coefficients in a 

linear combination format. They are advantageous over the 

traditional Fourier methods in analysing signals that contain 

d iscontinuities and sharp sp ikes. Wavelet transform generates 

sequence of signals known as approximation signals with d e-

creasing resolu tion supplemented  by a sequence of additional 

touches called  details.  
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Wavelets help to remove noise through the technique 

called  wavelet shrinkage or thresholding methods. When a 

signal is decomposed using wavelet, the resultant is a set of 

data called  the wavelet coefficients. Some of them contain the 

majority of signal data while others correspond to details. If 

the details are small, they might be omitted  without substan-

tially affecting the main features of interest. If the coefficients 

below a certain threshold  are truncated  the data is sparsely 

represented  and this sparse coding makes wavelets an excel-

lent tool in data compression and removing noise. So the idea 

of thresholding is to set to zero all coefficients that are less 

than a particular threshold . These coefficients are used  in an 

inverse wavelet transformation to reconstruct the data set. 

Wavelet denoising involves three steps: 

1) A linear forward  wavelet transform  

2) Non-linear thresholding 

3) A linear inverse wavelet transform  

Thresholding is a non-linear technique which operates on 

one wavelet coefficient at a time. The smaller coefficients are 

more likely due to noise and large coefficients due to impor-

tant signal features. Hence thresholding smaller ones help to 

avoid  noise. Each coefficient is thresholded by comparing 

against a threshold . To remove noise, the choice of threshold  is 

extremely important. It shou ld  not be too small or too large. If 

the threshold  value is too small, most of the noise remains 

whereas a large threshold  fails to preserve image features. 

Hence an optimum value is essential. Wavelet shrinkage d e-

pends heavily on the choice of thresholding parameter and the 

nature of the thresholding function . 

3   EXISTING METHODS 

Denoising via wavelet packet (WP) base w as introduced in 

2007. Unlike wavelet transform, the wavelet packet transform 

(WPT) decomposes both approximation and  detail subbands. 

Thus the resulting wavelet packet decomposition consists of 

more subbands than corresponding wavelet decomposition. 

At every decomposition level, all the subbands are subd i-

vided. The main advantage of such a decomposition is that a 

minimal representation can be obtained by suitably choosing 

which subbands to split and thus a choice can be made be-

tween several possible combinations of subbands. 

A prominent denoising method was introduced by G. 

Deng, D. B. H. Tay, and S. Marusic which was based on over-

complete wavelet representation and Gaussian models [2]. The 

method uses a signal estimation technique based on multiple 

wavelet representations called  the overcomplete representa-

tion. But no algorithm was specified  to achieve the expected  

result. Also, WPT was not used . A denoising algorithm using 

WPT with a new type of thresholding is the optimum linear 

interpolation method put forward  by Abdolhossein Fathi and 

Ahmad Reza Naghsh Nilchi [1].  

4   PROPOSED METHOD 

Overcomplete wavelet representation uses two or more similar 

wavelets to denoise a noisy image. Here, the pairs of wavelets 

used  are either similar in properties or originate from a single 

wavelet by means of double shifting or reversing. Some pairs 

used  include sym12 and coif4, sym4 and db4, sym12 and  

sym12d, coif4 and coif4d , sym12 and sym12r, coif4 and coif4r . 
A modified  form of the conventional over-complete re-

presentation is used  here. Instead  of WT for signal decomposi-

tion, WPT is used  and then optimal wavelet basis (OWB) is 

found. Another d ifference is that the Walsh Hadamard Tran s-

form (WHT) and the inverse WHT are not used .  
       Also the forward  transforms involve conditional decom-

position of the input image using selected  wavelet pairs. The 

coefficients thus obtained are the noisy coeffients and  so a 

MAP denoising algorithm is applied  which estimates the 

noise. The algorithm is based  on an adaptive thresholding 

function. Then an optimum interpolation function is used  in 

the thresholding step which more effective than the conven-

tional hard  or soft thresholding ru les. After modifying each 

and every coefficient present, a new set of coefficients is ob-

tained. Finally, this undergo inverse WPT and and is averaged. 

The proposed method is depicted  in  Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Thus, the overall method is implemented  by applying the 

OLI-Shrink method as the denoising block of the modified  

overcomplete wavelet representation . The various steps in-

volved in the process may be summarized  as in Fig. 2.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 Before applying thresholding, the image must be decom-

posed using wavelet packet transform. The obtained tree is 

optimized to extract an optimal wavelet basis. Then the two 

        
Fig. 1. Proposed method by modified overcompete representation 

                                
Fig. 2. Implementation of denoising block using OLI-Shrink  
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sets independently undergo MAP based denoising process 

using the same denoising algorithm. Computation of the thre-

shold  value and application of thresholding algorithm togeth-

er forms the denoising step. Denoised  coefficients are con-

verted  to spatial domain by inverse wavelet packet transform. 

The denoised  images can be averaged to get final outputs. 

5    WAVELET PACKET AND THE OPTIMAL WAVELET BASIS 

(OWB) 

Since the image is a 2-D signal, there exists a quad tree in the 

wavelet decomposition. Thus any image can be transformed 

into four pieces or subbands normally labelled  as the LL, LH, 

HL and HH as shown in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The traditional DWT decomposes a signal by subdivid ing 

or splitting the low resolu tion subband (i.e, LL) only. But the 

wavelet packet transform is obtained by splitting all the four 

subbands resulting in a fu ll quarternary tree. 

 
 
 
 
 
 
 
 
 
There are more than one basis functions possible for this 

type of a transform. But the optimal representation basis is 

selected  by optimizing a function known as the ―cost func-

tion‖ in each subband. The cost function determines the cost 

value for each node and its children in the fu ll binary tree ob-

tained earlier. A cost function is used  to choose between alter-

native basis functions for which the value of the cost function 

is minimised . Out of the various cost functions available, the 

Shannon entropy cost function is chosen and implemented  for 

selection of optimal basis. For the wavelet coefficients, the 

Shannon entropy of the coefficients of a par ticular subband S 

is computed  as:  

𝑆𝐸 𝑆 =  − 𝑆𝑖
2  

 

𝑖

log(𝑆𝑖
2)                                          (1) 

where S
i
 corresponds to the coefficients of subband S. 

The algorithm compares the cost values of parent node 

with their children nodes. If the sum of the cost values for all 

the children is lower than that of their parent node, then the 

children are retained, otherwise they are eliminated  retaining 

only the parent node. The cost value computation is recursive-

ly repeated  for all the nodes of the tree. The resulting tree is a 

basis that has the least cost among all the possible bases in this 

tree. So it is also called  as the best basis or the optimal basis.  

In the decomposition method described in the algorithm, 

the image is not completely decomposed into a fu ll WP tree. 

Instead , at each node, the splitting of nodes is carried  out only 

after satisfying the entropy based condition where, a parent 

node is decomposed into four child  nodes if and only if the 

entropy reduces on splitting. Thus for every node, splitting 

takes place only if there is a reduction in entropy. 

6   FAST OWB EXTRACTION 

The older methods for basis extraction used  the bottom -up 

procedure starting from the deepest level of the tree and pro-

ceeded back towards the root to extract the optimal basis from 

the fu ll WP tree of an image. Starting from the leaf nodes or 

the deepest level of the tree, these algorithms eliminated  the 

quads of nodes that had  cost higher than that of their parent 

node at each level, working back towards the root. The com-

putational complexity of this algorithm is high since it requires 

two passes over the tree for selection of basis. So instead , an 

alternative fast method is adopted  here in which the criteria 

for selection is applied  simultaneously with the tree growing 

step.  

The method for extracting OWB is a top -down search algo-

rithm. This algorithm starts at the root and generates the op-

timal basis tree without growing the tree to fu ll depth. Hence 

this approach is fast and computationally effective. The Shan-

non entropy is used  to compare between parent node and des-

cendants and produce the optimal wavelet basis. 

6.1 Algorithm for Fast OWB Extraction 

STEP 1: Choose L as the maximum number of WP decomposi-

tion levels. 

STEP 2: While the current level of decomposition d  is less than 

L, do steps 1 to 5 for each existing subband 𝑆𝑑
𝑖  where 

index is in 0 ≤ 𝑖 <  4𝑑 − 1.   

                          

1. Compute Shannon entropy 𝑆𝐸 𝑆𝑑
𝑖   for that subband. 

2. Decompose 𝑆𝑑
𝑖  into four children nodes  (𝐿𝐿𝑑+1

4𝑖 ,

𝐿𝐻𝑑+1
4𝑖+1 ,      𝐻𝐿𝑑+1

4𝑖+2, 𝐻𝐻𝑑+1
4𝑖+3). 

3. Compute the Shannon entropy of each node as: 

𝑆𝐸 𝐿𝐿𝑑+1
4𝑖  , 𝑆𝐸 𝐿𝐻𝑑+1

4𝑖+1 ,𝑆𝐸  𝐻𝐿𝑑+1
4𝑖+2 , 𝑎𝑛𝑑 𝑆𝐸(𝐻𝐻𝑑+1

4𝑖+3).  
4. If   𝑆𝐸 𝑆𝑑

𝑖  <     𝑆𝐸 𝐿𝐿𝑑+1
4𝑖  + 𝑆𝐸 𝐿𝐻𝑑+1

4𝑖+1 + 𝑆𝐸  𝐻𝐿𝑑+1
4𝑖+2 +

𝑆𝐸𝐻𝐻𝑑+14𝑖+3     , then retain the parent alone and 

eliminate children. Otherwise, retain both parent and 

children nodes. 

5. Continue till the process of OWB extraction reaches 

the end where there are no nodes to split.  

 

The reason behind selection of OWB is its dynamic de-

composition nature in forming subbands. Thus the wavelet 

basis will be d ifferent for the same signal having d ifferent 

noise levels. 

          
Fig. 3. Four subbands of the wavelet decomposition of an image. 

        
Fig. 4. Wavelet packet decomposition structure 
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7   WAVELET SHRINKING 

After finding out the basis and the corresponding threshold  

values for all existing subbands, the thresholding function 

need to be obtained. It is the thresholding function that actua l-

ly does the process of ―keeping‖ or modifying the necessary 

subband coefficients and ―killing‖ all unwanted  ones. Thus 

the thresholding function necessarily enhances or eliminates 

the wavelet coefficients. There are many ru les for threshold -

ing.  

In hard  thresholding algorithm, the wavelet coefficients 

(𝑌𝑖.𝑗
𝑠 ) less than the threshold  𝜆𝑠  are replaced with zero. All oth-

ers are kept unmodified . The hard  thresholding ru le is defined  

as follows:  

      𝛿𝜆𝑆
𝐻  𝑌𝑖 ,𝑗

𝑆  =   
0 ,  𝑌𝑖 ,𝑗

𝑆  ≤  𝜆𝑆

𝑌𝑖,𝑗
𝑆  ,         𝑌𝑖 ,𝑗

𝑆   >  𝜆𝑆   
                                     (2) 

In soft thresholding algorithm, however, the wavelet coeffi-

cients (𝑌𝑖 .𝑗
𝑠 ) less than the threshold  𝜆𝑠  are replaced with zero 

and others are mod ified  by subtracting the threshold  value 𝜆𝑠  

from the current value of coefficient 𝑌𝑖 ,𝑗
𝑆  as per the following 

ru le: 

  𝛿𝜆𝑆
𝑆  𝑌𝑖,𝑗

𝑆  =  
0 ,                                            𝑌𝑖,𝑗

𝑆  ≤  𝜆𝑆

𝑠𝑖𝑔𝑛 (𝑌𝑖,𝑗
𝑆 )   𝑌𝑖,𝑗

𝑆  − 𝜆𝑆   ,    𝑌𝑖 ,𝑗
𝑆  > 𝜆𝑆   

      (3)   

The hard  thresholding provides better edge preservation 

compared to soft, but noise will not be removed as good  as by 

soft thresholding. The soft thresholding is more efficient and 

continuous, and yields better visually pleasing images than 

hard  thresholding, but still it does not use the optimal value 

for modification of large coefficients. In order to overcome 

these limitations, the new algorithm is introduced . The thre-

sholding function thus obtained for the algorithm uses a linear 

interpolation between each coefficient and mean value of the 

subband to calculate the modified  version of coefficients. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence it is named as Optimum Linear Interpolation or OLI- 

Shrink as it shrinks the coefficients in an optimum  way. A not-

able feature of this threshold ing is that it takes d ifferent values 

as threshold  for d ifferent subbands and decomposition levels. 

8   THRESHOLD VALUE DETERMINATION 

Threshold  value selection is the most critical task in the 

process of wavelet based  denoising algorithm. Before going 

into the algorithm for thresholding, the value of threshold  

must be evaluated . The adaptive threshold  value is computed  

by analysing the statistical parameters of each subband  coeffi-

cient. The threshold  is not at all a constant value and  is there-

fore calculated  for all terminal nodes of the OWB tree. Due to 

this varying nature of threshold , the denoising algorithm be-

comes adaptive. 

Finding an optimal value is not at all an easy task. The val-

ue must not be too small or too large. A small threshold  may 

let noisy coefficients be admitted  and hence the resultant im-

age remains noisy. A large threshold  sets a large number of 

coefficients to zero leading to smoothing of the image and may 

cause blurring and artifacts and hence the resultant images 

may lose some signal values or details. Therefore, an optimum 

threshold  value is desired  to minimize noise, which is adapt a-

ble also to each subband characteristics. A constant value will 

not give good result since the value su itable for one subband  

or level may not be the right choice for some other subband or 

level. Hence an optimal threshold  value which is adaptable to 

each subband is desired  to maximise the signal and minimize 

the noise.  

Optimal threshold  selection algorithm is used . In this algo-

rithm, an adaptive threshold  value 𝜆𝑠  for each subband S at 

level d is calculated  as 

𝜆𝑠 =  𝛼𝑑 ,𝑠   
𝜎𝜂

2

𝜎𝑋,𝑠

                                                  (4) 

    
(a)          (b) 

Fig. 5. (a) A 3-level wavelet packet decomposition of an image (b) Corresponding optimal wavelet basis showing the terminal nodes at various levels 
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where 𝜎𝜂
2 and  𝜎𝑋,𝑠

2  are the variances of noise and clean image 

coefficients respectively in the subband S. The noise is as-

sumed to be an additive Gaussian white noise. Since the input 

noise variance is unknown, it can be estimated  by applying 

the median estimator on the HH
1 
subband’s coefficients (𝑌𝑖 ,𝑗

𝐻𝐻1) 

as  

𝜎  𝜂  
2 =   

𝑚𝑒𝑑𝑖𝑎𝑛 |𝑌𝑖,𝑗
𝐻𝐻1| 

0.6745
 

2

                                  (5) 

 

Since the noise is additive, the observation model can be 

described  as 𝑌𝑖 ,𝑗
𝑠 =  𝑋𝑖 ,𝑗

𝑠 +  𝜂𝑖 ,𝑗
𝑠   where, 𝑌𝑖,𝑗

𝑠  are the noise coeffi-

cients of subband S, 𝑋𝑖 ,𝑗
𝑠  are the coefficients of the clean su b-

band (noise free image) and  𝜂𝑖 ,𝑗
𝑠  are the noise coefficients. As-

suming that 𝑌𝑖 ,𝑗
𝑠 , 𝑋𝑖 ,𝑗

𝑠  , and  𝜂𝑖 ,𝑗
𝑠  have generalised  Gaussian d is-

tribution models their variances can be written in the form  

 𝜎𝑌,𝑠
2 =  𝜎𝑋,𝑠

2 +  𝜎𝜂
2 where  𝜎𝑌,𝑠

2  is the variance of coefficients (𝑌𝑖,𝑗 ) 

in subband S. From this relation, the signal variance can be 

derived as 𝜎𝑋,𝑠
2 = 𝑚𝑎𝑥 𝜎𝑌,𝑠

2 −  𝜎𝜂
2    ,   0 .  

In previous methods, the term 𝛼𝑑 ,𝑠  was set to one, but here, 

𝛼𝑑 ,𝑠  value is employed to make the threshold  su itable in each  

decomposition level and  the subbands within. In other words, 

𝛼𝑑 ,𝑠  is set so as to get a larger threshold  for high frequency 

subbands based on their level of decomposition. 

 𝛼𝑑 ,𝑠  term makes the threshold  value more dependent on 

level d and  subband  s. Since image information exists more in 

the low frequency subband than in the high frequency su b-

band and since the probability of existence of noise in the high 

frequency component is greater, applying a greater threshold  

value to the high frequency subband reduces the effect of 

noise more effectively. Also for two successive levels, as the 

level of decomposition is increased , the frequency bandwidths 

of the created  subbands become more limited . So, the thre-

shold  value for L1 should  be greater than L2 because the high 

frequency components of L1 need to be larger than L2. Thus  

𝛼𝑑 ,𝑠  makes the threshold  value level and subband dependent.  

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

The indexing i is done with the decomposition level taken 

as the highest level L. Subbands at L
th
 level are labelled  from 

left to right end for horizontal and from top to bottom for ver-

tical function as shown in Fig. 6. For each and every subband 

present in the decomposition, there will be a particular value 

for SWF in both horizontal and vertical d irections based on the 

index values. 

The number of subbands is d ifferent for d ifferent levels. 4 

subbands for level 1, 16 for level 2, 64 for level 3 and so on. For 

maximum decomposition level L, the index value i starts from 

1 to 2
L
 each in horizontal and vertical d irections and are la-

belled  as in Fig. 6. The indexing for maximum level L = 4 is 

illustrated . 

For a node at any level L the value of index i and  j respec-

tively in horizontal and vertical d irections, may be between 1 

and 2
L
. The value of 𝛼𝑑 ,𝑠  for each subband s at each level d is 

calculated  as the sum of SWF values in horizontal (SWF
H
) and  

vertical (SWF
V
) d irections that span by subband s as 

𝛼𝑑 ,𝑠 =   𝑆𝑊𝐹𝐻 𝑖 

𝑖⊂𝑠

+   𝑆𝑊𝐹𝑉 𝑗 

𝑗⊂𝑠

                     (6) 

Thus, by employing the term 𝛼𝑑 ,𝑠  the proposed threshold  

becomes level and subband dependent. The subband weigh t-

ing function (SWF) in horizontal (SWF
H
) and vertical (SWF

V
) 

d irections at each level makes 𝛼𝑑 ,𝑠  dependent on level d and  

subband s. This function should  be an increasing function on 

both horizontal and vertical d irections. From among the var i-

ous increasing functions, a better result was obtained when 

the SWF is defined as  

𝑆𝑊𝐹𝐻 𝑉  𝑖 =  
𝑖2

22𝐿
  𝑓𝑜𝑟 𝑖 = 1, 2,… . , 2𝐿                      (7) 

where i is the index of subbands at the highest level of decom-

position in horizontal and vertical d irections, when the d e-

composed subbands are arranged in the matrix structure. The 

factor 22𝐿  is used  to normalize the SWF because in level L, 

since there are 2𝐿 subbands in each d irection. 

After computing SWF values the term 𝛼𝑑 ,𝑠  is obtained. The 

variances are also estimated  using the above mentioned equ a-

tions. Substitu ting these values in the equation for  𝜆𝑠 , the 

threshold  value is obtained for a particular subband at a level. 

For each subband of each of the levels, the threshold  value 

varies and is therefore computed  for all the nodes. 

Thus in order to determine the optimal threshold  value 𝜆𝑠  
certain other parameters have to be computed . All other pa-

rameters except the noise variance vary for d ifferent subbands 

of the OWB. Noise variance is a constant value for a selected  

image and is computed  only once. So the determination of 

threshold  value involves the following five steps. 

8.1    Computation of SWF: 

SWF is computed  in two directions, horizontal and vertical. 

For the level L, subband index takes only a single value and is 

used  to calculate the function  
𝑖2

22𝐿 . For all other levels L-1 to 1, 

index i takes several values. The SWF values are computed  in 

the decreasing order of the levels, from L to 1.  

The logic behind finding node index value i for subsequent 

nodes at level L is that for nodes 1 and 2 (i.e., LL and LH), the 

horizontal index is 1 and 2 respectively but the vert ical index 
Fig. 6. Subband index i and j and corresponding SWF values in 
horizontal and vertical directions. 
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is 1 for both the nodes. Similarly for nodes 3 and  4 (i.e., HL 

and HH), the horizontal indices are 1 and 2, but the vertical 

index is 2. Only after assigning index values, the SWF values 

can be evaluated . 

Nodes at level 4 has single values for indices i and  j in hori-

zontal and vertical d irections respectively. In Fig.7, the 4
th
 level 

nodes are coloured  as blue and having single i and  j values. 

But for level 3 nodes of the OWB, index i and  j takes two val-

ues. This is due to the fact that level 3 n odes are equivalent to 

the combination of four nodes at level 4. Level 3 nodes are 

coloured  yellow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, nodes at level 2 are equivalent to the combination 

of four nodes at level 3 which is in turn composed of four 

nodes at level 4. Thus, level 2 nodes are composed of sixteen 

nodes at level 4 and thus index takes four values in each d irec-

tion. Level 2 nodes are coloured  pink. Finally, level 1 nodes 

take eight values each for i and  j and  are coloured  green. In 

general, any node at level k takes 2𝐿−𝑘  values each for indices i 

and  j where L is the maximum level present in the OWB. 

8.2 Computation of Weighting Factor  𝜶𝒅,𝒔  

For a node at level d and  subband s, 𝛼𝑑 ,𝑠  is the sum of horizon-

tal and vertical subband weighting functions. Thus for every 

node of the OWB, the 𝛼𝑑 ,𝑠  will be d ifferent due to the d iffer-

ence in d and s. First, the SWF values in two directions are 

found . Then they are added to obtain the 𝛼𝑑 ,𝑠  value for a par-

ticular node. 

An important peculiarity of this term is that its value goes 

on decreasing with increase in level. This is because for the 

highest level the SWF is single indexed but for lower levels the 

value is cumulative, thereby giving the largest possible value 

for 𝛼𝑑 ,𝑠  at the lower levels. Thus the value of  𝛼𝑑 ,𝑠  is maximum 

for the lowest level and minimum for the highest level present 

in the tree. Another property of 𝛼𝑑 ,𝑠  is that within the same 

level, the value increases with increasing index i since SWF is 

an increasing function in i. So within a level, the value is min-

imum for a lower index subband than that of a higher index 

subband. Thus 𝛼𝑑 ,𝑠  increases with s and  decreases with d.  

8.3 Computation of Noise Variance  𝝈𝜼
𝟐 

Noise variance is a constant value for a selected  image. So its 

value is same and for all of the subbands the same value of 𝜎𝜂
2 

is applied . Also it can be calculated  prior to the computation of 

all other threshold  related  parameters since it is independent 

of node coefficients.  

The value of 𝜎𝜂
2 is unknown and therefore we estimate it by 

the median estimator applied  on the coefficients of HH1 sub-

band. The coefficients of node [1, 3] are required . The square of 

the median of the absolu te coefficient value d ivided by 0.6745 

is the estimate of noise variance denoted  as 𝜎  𝜂  
2 .  

8.4 Computation of Signal Variance  𝝈𝑿,𝒔
𝟐  

The variance of the signal is the variance of the coefficients of 

that subband  for a noise free image. So for any selected  node 

the signal variance is the variance of the wavelet packet coeffi-

cient matrix of that particular node. The value is not used  as 

such in computing the threshold . But instead  the square root 

of the signal variance is applied  in the equation for threshold . 

So threshold  d irectly depends on the standard  deviation of the 

signal 𝜎𝑋,𝑠
 .  

The available coefficients do not correspond to the actual 

coefficients since they contain noise. To find  the actual coeffi-

cients, the only way is to estimate it from the noisy coeffi-

cients. So the value of signal variance 𝜎𝑋,𝑠
2  has to be estimated  

using the variance of noisy coefficients 𝜎𝑌,𝑠
2  and  the estimated  

noise variance 𝜎
2 . 

 Since the noise is additive in nature, the noisy coefficients 

𝑌𝑖 ,𝑗
𝑠  can be modelled  as  𝑌𝑖 ,𝑗

𝑠 =  𝑋𝑖 ,𝑗
𝑠 +  

𝑖 ,𝑗
𝑠  where 𝑋𝑖 ,𝑗

𝑠  are the coef-

ficients of the clean subband  (noise free state) and 
𝑖 ,𝑗
𝑠  are the 

noise coefficients. Assuming that all these three terms have 

generalised  Gaussian d istribution and since the clean image 

and the noise are independent, the variance terms may be 

equated  as 𝜎𝑌,𝑠
2 =  𝜎𝑋,𝑠

2 +  𝜎
2 . Here, the 𝜎𝑌,𝑠

2  term can be calcu-

lated  as the variance of coefficients 𝑌𝑖,𝑗  in subband S. From this 

relation, the signal variance 𝜎𝑋,𝑠
2  can be derived as 𝜎𝑋,𝑠

2 =

𝑚𝑎𝑥 𝜎𝑌,𝑠
2 −  𝜎

2 , 0 . So the value required  in the threshold  eq-

uation is the square root term 𝜎𝑋,𝑠 =   𝑚𝑎𝑥 𝜎𝑌,𝑠
2 −  𝜎

2 , 0  . 

8.5 Computation of Threshold Value  𝝀𝒔  

After finding the values of the parameters  𝛼𝑑 ,𝑠 , 𝜎𝜂
2 and  𝜎𝑋,𝑠

2 , the 

threshold  value 𝜆𝑠  is obtained as the ratio of noise variance to 

the square root of signal variance (SD of signal) multiplied  by 

the weighting factor  𝛼𝑑 ,𝑠 . Thus the threshold  value is depen-

dent on the level d and  subband  s. Even for d ifferent nodes of 

the same level, the threshold  value will be d ifferent. Also for 

nodes at d ifferent level there is a significant variation  in the 

range of threshold  value. For higher levels the value is smaller 

compared to the value at a lower level. The threshold  will be 

maximum for level 1 and goes on decreasing as the level in-

creases.  

A most important property of the threshold  value is that it 

Fig.7.  Assigning horizontal (H) and vertical (V) index values for nodes 
at different levels 
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must be relative to the values of the coefficients at d ifferent 

levels. The lower level coefficients are larger compared  to the 

higher levels and therefore the threshold  values also need to 

be larger at lower levels. Thus the adaptive threshold  exactly 

follows this requirement due to the decreasing nature of 𝛼𝑑 ,𝑠  

with increasing level. 

All dynamic terms like 𝛼𝑑 ,𝑠 , and  𝜎𝑋,𝑠
2  are computed  prior to 

the computation of threshold  𝜆𝑠  for each subband s. The thre-

shold  meets all required  conditions for its adaptive nature due 

to the presence of weighting function which is in turn due to 

the dependency of SWF on level d and  subband s. Since SWF 

varies with d and  s, the resultant threshold  is clearly adaptive 

to d and  s. 

9   THRESHOLDING ALGORITHM 

To overcome the shortcomings of the previously used  hard  

and soft thresholding ru les, a new algorithm is introduced. 

The principle behind all thresholding methods is that the coef-

ficients smaller than a specific value or threshold  are can-

celled . The new thresholding algorithm called  OLI-Shrink uses 

optimal linear interpolation between each coefficient and cor-

responding subband mean for the modification of dominant 

coefficients. The thresholding function is described as  

 

𝛿𝜆𝑠
𝑂𝐿𝐼 𝑌𝑖 ,𝑗

𝑆  =   
0,                                         𝑌𝑖 ,𝑗

𝑆   ≤  𝜆𝑆

𝑌𝑖 ,𝑗
𝑆 − 𝛽 𝑌𝑖 ,𝑗

𝑆 − 𝜇𝑆 , |𝑌𝑖 ,𝑗
𝑆 | >  𝜆𝑆

            (8) 

where 𝜇𝑆  is the mean value of the coefficient of subband s; and 

𝛽 is computed  as 𝛽 =
𝜎𝜂

2

 𝜎𝑋 ,𝑠
2 +𝜎𝜂

2 
 ≅  

𝜎𝜂
2

𝜎𝑌 ,𝑠
2  . The thresholding func-

tion is derived using Bayesian MAP estimation of a signal 

from its noisy version. Thus the modified  coefficient is est i-

mated  by a weighted  linear interpolation of the unconditional 

mean and the observed value of coefficients. Hence this op-

timal linear interpolation between each coefficient and corres-

ponding subband’s mean (MAP based) is combined  with 

wavelet thresholding algorithm (based on adaptive threshold) 

to yield  the proposed thresholding function  𝛿𝜆𝑠
𝑂𝐿𝐼 . Based on 

these analyses, the efficient and simple to implement denois-

ing algorithm may be summarised  as follows: 

 

9.1 Proposed Denoising Algorithm  

 

STEP 1 : Perform WP decomposition to obtain OWB. 

STEP 2 : Estimate noise variance, 𝜎𝜂
2 for the image. 

STEP 3 : For each subband  S in level d , compute the    

statistical parameters: 

 Subband variance   𝜎𝑌,𝑠
2    

 Subband mean   𝜇𝑠   

 Clean image variance   𝜎𝑋,𝑠
2   

 Subband weighting factor   𝛼𝑑 ,𝑆  

 Coefficient weighting factor   𝛽  
STEP 4 : Find  the threshold  value 𝜆𝑆  for all existing 

nodes. 

STEP 5 : Threshold  all subband’s coefficients using the 

proposed  threshold ing technique ―OLI-

Shrink‖.  

STEP 6 : Construct the new tree using modified  coeffi-

cients. 

STEP 7 : Perform the inverse WPT to reconstruct the 

denoised  image.  

          

Apart from the threshold  value  𝜆𝑆  certain other variable 

have to be evaluated  before beginning with the thresholding 

algorithm. One is the subband mean 𝜇𝑠  which is the mean val-

ue of the coefficients of a selected  subband s. This is calculated  

separately for every node present in the tree. Another term 

required  in the thresholding function is the coefficient weigh t-

ing factor  𝛽. It is computed  as the ratio between noise variance 

and the sum of signal and noise variances. In other words, 𝛽 

can be approximated  as the ratio of variance of noise 𝜂 to the 

variance of the subband coefficients  𝑌𝑖 ,𝑗 .  

To apply the thresholding function, each of the coefficient 

values 𝑌𝑖 ,𝑗 is to be compared with the previously computed  

threshold  value  𝜆𝑆 of the corresponding subband s. If the ab-

solu te value of coefficient is smaller than threshold , they are to 

be neglected  and  need not be considered  while performing the 

inverse transform. Hence such terms are replaced by zero. 

Otherwise if the absolu te values of coefficients exceed the 

threshold  value of that subband, then they are to be modified  

to a new value determined by the properties of the subband  

which is in turn dependent on the terms 𝜇𝑠  and  𝛽. Thus the 

thresholding function is repeatedly applied  to all the coeffi-

cients in all the subbands and the new values replace the old  

coefficients in the tree. Now a new tree is obtained as a resu lt 

of the thresholding function  𝛿𝜆𝑠
𝑂𝐿𝐼 . The modified  tree with the 

new values of coefficients in every subband s then undergoes 

an inverse wavelet packet transform to reconstruct the noise-

less or the denoised  image. 

The thresholding function can be applied  alike to both 

grayscale and colour images. The only d ifference is that the 

coefficient matrix is three d imensional. Hence denoising co-

lour images will take more time than its grayscale counterpart.  

10  DENOISING BY MODIFIED OVERCOMPLETE WAVELET 

REPRESENTATION 

The overcomplete representation is a model based  approach 

and its performance depends on how well the model fits the 

signal and how accurately the parameters are estimated . Here, 

a MAP-based approach is followed. 

A signal estimation algorithm based  on multiple wavelet 

representations and Gaussian models is u tilised  here. The 

proposed method  consists of two major steps: optimum est i-

mation of the wavelet coefficients and averaging of the sep a-

rate denoised  images. Using over-complete representations 

(multiple wavelet transforms) the important image features 

can be captured  by using the least number of transform coeffi-

cients. Optimum estimation step is carried  out by OLI-Shrink 

algorithm.   

The effective image denoising algorithm is based  on the 

maximum a posteriori (MAP) estimation principle. Here the 

idea of MAP-based estimation is extend ed to the use of two or 

more wavelets instead  of a single wavelet.  
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The proposed method  consists of two d istinct WP tran s-

forms followed by a denoising algorithm resulting in two sep-

arate set of wavelet coefficients. The optimal basis and MAP-

based linear thresholding ru les applied  to both are the same. 

After denoising algorithm, the two WPTs undergo inverse 

transform and thereby produce two denoised  images. In order 

to get a better result the average of the two is taken as final 

output. The entire algorithm can be summarised  as follows: 

10.1 Denoising Algorithm by Modified Overcomplete   
 Wavelet Representation 

STEP 1: Perform an L-level wavelet transformation of the noi-

sy image along with OWB extraction procedure using 

two wavelets separately, producing two trees of wave-

let coefficients. 

STEP 2: Apply the denoising method based on adaptive thre-

sholding function described by OLI-Shrink for the 

two trees producing two sets of modified  coefficients 

(denoised  coefficients). 

STEP 3: Perform the inverse wavelet transformation resulting 

in two denoised  images. 

STEP 4: Take the average of the denoised  images to give the 

final denoised  image. 

The method can be extended  to using more than two wave-

lets for denoising. Thus the algorithm performs two or more 

individual MAP-based wavelet denoising process and  takes 

the average of them as the final result. 

For denoising, the best result giving OLI-Shrink algorithm 

is applied  for thresholding. To demonstrate the performance of 

this denoising method, the pairs of wavelets with similar 

properties are tested . Wavelet pair sym12 and coif4 is chosen 

since the wavelet filters are of same length. Other types of 

wavelet pair that originate from one orthogonal w avelet are 

also taken. One way of forming such a pair is to use an orth o-

gonal wavelet and its double shifted  version. Another way of 

forming pair is to use an orthogonal wavelet and its reverse 

version. Both operations are achieved for orthogonal wavelets 

by double shifting or reversing the scaling filter. In actual im-

plementation, double shifting corresponds to the double shift-

ing of all filters while reversing corresponds to using recon-

struction filter for decomposition and decomposition filter for 

reconstruction. 

The averaging step improves the signal to noise ratio as 

long as the noises in each of the denoised  images are not corre-

lated . Achieving an acceptable result for OLI-Shrink requires 

independent calculation of parameters since each uses d istinct 

wavelets for decomposition and threshold  computation is 

done separately. Thus OC representation is the basic denoising 

strategy and its success lies in the efficiency of the denoising 

algorithm used in it. Both the approaches improve denoising 

and thus their combination leads to better result. 

11   PERFORMANCE EVALUATION 

The performance of the proposed noise reduction algorithm is 

measured  with the help of quantitative performance measures 

such as peak signal to noise ratio (PSNR) and in terms of the 

visual quality of the images using universal image quality in-

dex (UIQI).  

11.1   Peak Signal to Noise Ratio (PSNR)   

The denoised  image will never be same as that of the original 

image. So in order to represent the error between two versions 

of the same image, the mean squared  error (MSE) is u sed . MSE 

between the original image X and the denoised  image X̂  is 

given as 

𝑀𝑆𝐸 =  
1

𝑀𝑁
   (𝑋 𝑖, 𝑗 −  X̂ 𝑖, 𝑗 )2

𝑁

𝑗=1

𝑀

𝑖=1

                           (9) 

where M and N are the width and height of the image respec-

tively. Now the PSNR is calculated  on the basis of MSE. For 

the denoised  image the PSNR is given by 

𝑃𝑆𝑁𝑅  𝑋, X̂ =  10 log10  
2552

𝑀𝑆𝐸
  𝑑𝐵                              (10)  

11.2   Universal Image Quality Index (UIQI)  

The performance of most of the algorithms is evaluated  by 

computing the Peak Signal to Noise Ratio (PSNR) alone. The 

PSNR is purely a mathematical measure and does not contain 

any indication about the perceived quality. It was in 2002 that, 

Zhou Wang and Alan C. Bovik introduced a new  objective 

image quality index called  the Universal Image Quality Index 

(UIQI) [18] which signifies perceptual quality. UIQI is a new 

objective image quality index which signifies the perceptual 

quality of images and is calculated  based on their visual quali-

ty. The index is universal in the sense it does not depend on 

the images being tested , viewing conditions or individual ob-

servers. The universal image quality index is given by: 

𝑈𝐼𝑄𝐼 𝑋,𝑋  =  
4𝜎 𝑋 ,𝑋 ̂ 𝜇𝑋  𝜇𝑋 ̂

 𝜎𝑋
2 + 𝜎X̂

2  𝜇𝑋
2 + 𝜇X̂

2 
                               (11) 

where 𝜎 𝑋,�̂�  is the covariance of X and X̂,   𝜇𝑋 , 𝜇�̂�  are the mean 

values of X and X̂  and  𝜎𝑋
2, 𝜎X̂

2 are the variances of X and X̂.  

UIQI is a real number between 0 and 1 inclusive. The best va l-

ue UIQI = 1 is achieved if and only if X = X̂. UIQI is designed 

by modeling image d istortion as a combination of three d istor-

tions related  to correlation, luminance and contrast. UIQI 

models the total d istortion in an image as a combination of the 

three factors: 

1) Loss of correlation  

2) Luminance d istortion 

3) Contrast d istortion  

UIQI represents each of them as 𝑈𝐼𝑄𝐼 =  
𝜎  𝑋 ,𝑋 

𝜎𝑋𝜎𝑋 
 .

2𝜇𝑋𝜇𝑋 

𝜇𝑋
2 +𝜇

𝑋 
2  .

2𝜎𝑋𝜎𝑋 

𝜎𝑋
2 +𝜎

𝑋 
2  . 

Here, the first term refers to the correlation coefficient that 

measures the degree of linear correlation between X and  X̂ and  

lies in the range [-1, 1]. The second term is the luminance d is-

tribution that measures how close is the mean luminance be-

tween X and X̂. This value is in the range [0, 1] and is equal to 

1 only if 
X
=

X̂ 
. The last term is the contrast d istribution wh ich 

measures how similar the contrasts of the images X and X̂ are. 

This also lies in the range [0, 1] and becomes 1 if and only if   

σ
X
= σ

X̂ 
since σ

X
 and  σ

X̂
 give an estimate of the contrasts of X and   
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X̂ respectively. In short, images of better visual appearance 

have higher Q value. Thus it outperforms the MSE significan t-

ly in characterizing images under d ifferent types of image d is-

tortions. 

12   RESULT AND DISCUSSION 

The denoising is implemented  and all the related  decomposi-

tion, processing and reconstruction are done using MATLAB 

version 7.5.0. with the help of wavelet toolbox and associated  

functions. The entire algorithm can be applied  to grayscale as 

well as colour images identically.  

The test images are contaminated  by Gaussian white noise 

at eight d ifferent standard  deviations σ = 5, 10, 15, 20, 30, 40, 

50, 60. Noise addition is done by adding a random matrix 

multiplied  by the noise variance to the image matrix. The 

MATLAB code for the entire procedure consists of around 800 

lines. The code was run using Intel Core i5 processor with in-

ternal RAM capacity of 4 GB sup ported  by a 64-bit Windows 

Home Basic operating system. The average computational 

time is 8 to 15 seconds for noise intensities of σ = 5 to σ = 60 

and maximum decomposition level L= 4. 

The OWB is a subtree that contains selected  nodes and the 

decomposition is critical in applying the rest of the algorithm 

steps. The OWB obtained for several images is given in Fig. 8. 

The output of the denoising algorithm for various noise in ten-

s   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sities are shown in Fig. 9. Images on the left correspond to the 

noisy input and those on right are the denoised  images.  

The PSNR values for the proposed method was found to be 

excellent compared to the previous methods available esp e-

cially when the noise intensity is higher. Also the new index 

UIQI was found  for the denoised  images and  the value is very 

close to 1. Maximum PSNR is obtained for smaller values of 

noise. The PSNR and UIQI p lots obtained are given in Fig. 10. 

As the noise increases, the UIQI value also decreases for a ll the 

images under consideration. The notable feature is that even 

in presence of heavy noise, the algorithm produced better vis-

ual results in terms of UIQI. The value is always above 0.98 

which indicates superior quality in noisy environments. 

From the graphs it is clear that the visual quality of d e-

noised  image is better since the UIQI values are very near to 

unity. As noise increases, UIQI decreases, but does not go be-

low 0.98. So the effectiveness of the algorithm is pretty good. 

A comparison is made between the proposed method and 

other thresholding methods in Fig. 11.   The PSNR and UIQI 

values were found to be superior for the proposed method 

than any available method. 

13  CONCLUSION 

On analysing various steps of the algorithm it was found 

that the new threshold  value is level and subband dependent. 

    
           (a)                                                                                                              (b) 

   
             (c)              (d) 

Fig. 8. Optimal Wavelet Basis (OWB) obtained for a test image with d ifferent values for the maximum level of decomposition L. 

(a) L = 1 (b) L = 2 (c) L = 3 (d) L = 4 
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The new index UIQI better represents the visual quality than 

the PSNR. Optimum linear interpolation overcomes the limita-

tions of both hard  and soft thresholding techniques. PSNR and  

UIQI value of the proposed denoising algorithm outperforms 

other methods at various noise levels. Changing the maximum 

decomposition level resulted  in slight variations in both PSNR 

and UIQI values. When noise free input is applied  the algo-

rithm enhances the images with PSNR around  50 dB and UIQI 

almost equal to 1. Analysis of experimental results obtained   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for d ifferent test images, under various noise levels, ind icated  

that the output of this method  is more visually pleasant. In 

addition, the computational cost is modest; and so it is su itable 

for many image processing applications, such as medical im-

age analyzing systems, noisy texture analyzing systems, d is-

play systems, and d igital multimedia broadcasting. The possi-

ble improvements include finding an effective way of redu c-

ing the computational time while using three or more wavelets 

for the method instead  of two. The result may be improved by  

    
         (a)           (e) 

 

    
         (b)           (f) 

 

    
          (c)          (g) 

 

    
         (d)          (h) 

 

Fig. 9. Outputs of the proposed denoising method by modified  overcomplete wavelet representation applying OLI-Shrink algo-

rithm for thresholding. For each subimage, L is taken as 4. Images on the left are the noisy inputs with increasing noise con tent 

and those on the right are the denoised  results. (a) Input noise σ =5 , Output PSNR=32.8470 dB; UIQI=0.9992 (b) Input noise σ 

=10, Output PSNR=29.0943 dB; UIQI=0.9982 (c) Input noise σ =15 , Output PSNR=26.9320 dB; UIQI=0.9970 (d) Input noise σ 

=20, Output PSNR=25.2988 dB; UIQI=0.9957 (e) Input noise σ =30 , Output PSNR=23.0966 dB; UIQI=0.9928 (f) Input noise σ 

=40, Output PSNR=21.3730 dB; UIQI=0.9893 (g) Input noise σ =50 , Output PSNR= 20.1579 dB; UIQI=0.9859 (h) Input noise σ 

=60 , Output PSNR=18.8881 dB; UIQI= 0.9813   
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increasing the number of decomposition levels used , number 

of wavelet denoising used  in parallel and also by better m e-

thods of estimating subband noise. It can also be suggested  

that the proposed algorithm may be extended to video fram e-

work that may be very useful in  video denoising.   
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